Spaces of Functions Satisfying Simple Differential Equations

نویسنده

  • Wolfram Koepf
چکیده

In [6]–[9] the first author published an algorithm for the conversion of analytic functions for which derivative rules are given into their representing power series ∞ ∑ k=0 akz k at the origin and vice versa, implementations of which exist in Mathematica [19], (s. [9]), Maple [12] (s. [4]) and Reduce [5] (s. [13]). One main part of this procedure is an algorithm to derive a homogeneous linear differential equation with polynomial coefficients for the given function. We call this type of ordinary differential equations simple. Whereas the opposite question to find functions satisfying given differential equations is studied in great detail, our question to find differential equations that are satisfied by given functions seems to be rarely posed. In this paper we consider the family F of functions satisfying a simple differential equation generated by the rational, the algebraic, and certain transcendental functions. It turns out that F forms a linear space of transcendental functions. Further F is closed under multiplication and under the composition with rational functions and rational powers. These results had been published by Stanley who had proved them by theoretical algebraic considerations. In contrast our treatment is purely algorithmically oriented. We present algorithms that generate simple differential equation for f+g, f ·g, f ◦r (r rational), and f ◦x (p, q ∈ IN0), given simple differential equations for f , and g, and give a priori estimates for the order of the resulting differential equations. We show that all order estimates are sharp. After finishing this article we realized that in independent work Salvy and Zimmermann published similar algorithms. Our treatment gives a detailed description of those algorithms and their validity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear algebra and differential geometry on abstract Hilbert space

Isomorphisms of separable Hilbert spaces are analogous to isomorphisms of n-dimensional vector spaces. However, while n-dimensional spaces in applications are always realized as the Euclidean space Rn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. ...

متن کامل

C-Class Functions and Remarks on Fixed Points of Weakly Compatible Mappings in G-Metric Spaces Satisfying Common Limit Range Property

In this paper, using the contexts of C-class functions and common limitrange property, common fixed point result for some operator are obtained.Our results generalize several results in the existing literature. Some examplesare given to illustrate the usability of our approach.

متن کامل

Existence of solution and solving the integro-differential equations system by the multi-wavelet Petrov-Galerkin method

‎In this paper, we discuss about existence of solution for integro-differential system and then we solve it  by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality is one of the properties of Alpert multi-wavelet which helps us to reduce computations in ...

متن کامل

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

Numerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions

‎In this work‎, ‎we consider the parabolic equation‎: ‎$u_t-u_{xx}=0$‎. ‎The purpose of this paper is to introduce the method of‎ ‎variational iteration method and radial basis functions for‎ ‎solving this equation‎. ‎Also, the method is implemented to three‎ ‎numerical examples‎. ‎The results reveal‎ ‎that the technique is very effective and simple.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994